a2 United States Patent

Riggs

US009471664B2

10) Patent No.: US 9,471,664 B2
45) Date of Patent: *Oct. 18, 2016

(54)

(71)
(72)
(73)

")

@
(22)

(65)

(63)

(60)

(1)

(52)

SYNTACTIC TAGGING IN A
DOMAIN-SPECIFIC CONTEXT

Applicant: Locus LP, Hamilton (BM)
Inventor: Reory Riggs, New York, NY (US)
Assignee: Locus LP, Hamilton (BM)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/967,328
Filed: Dec. 13, 2015

Prior Publication Data

US 2016/0098475 Al Apr. 7, 2016

Related U.S. Application Data

Continuation of application No. 14/736,262, filed on
Jun. 10, 2015, which is a continuation of application
No. 14/216,390, filed on Mar. 17, 2014, now Pat. No.
9,069,802.

Provisional application No. 61/802,245, filed on Mar.
15, 2013, provisional application No. 61/801,959,
filed on Mar. 15, 2013.

Int. CI.
GOGF 17/30 (2006.01)
G06Q 10/06 (2012.01)
U.S. CL.

CPC ... GO6F 17/30598 (2013.01); GOGF 17/30241
(2013.01); GOG6F 17/30289 (2013.01); GO6F
17/30342 (2013.01); GO6F 17/30368

(2013.01); GO6F 17/30371 (2013.01); GO6F
17/30377 (2013.01); GO6F 17/30424

(2013.01); GOGF 17/30528 (2013.01); GO6F
17/30554 (2013.01); GO6F 17/30589

<oust-finol-bar-code>
<eust-sub-bor—code> "

<g-of-c—dept-bar—code> %
e-of-c-finol-bar-code> "
<c-of-c-sub-bar—code>

<ent-har-cofe> == <ent-loous> <ent-pi fer> <ent-product-marker> clemp-coort

value>

eoond”
ures~Product” | "Aetivity-Product”
== "In-house" | “Outsourced”

<temp—coord-vue> =
Cent-produ

<ent—locus>
<int-locus>
<first-int-1oc
<sacond-int-locus

ng-locus>
ng-locus>
ong-locss>
ng-locus>

<pure-—cust-
<cust-hcts
<clst-wg-1
<cust-dept-locts:
<ast-final-los
<eust-sub-focus>

= long—locus>
ng-locus>

<long-locus>
g-locus>
ibbr-locus>
<abbr-locus>
<c—of-c-locus> —locus>
<e-of-c-wg-kc
<e-of-c—dept-locus>

<c=of-c~final-locus> =
<c-of-¢-sub~1oc

<abbrlocus> == <sublect-resource> <octly> <diect-oblect-resouree>

(2013.01); GO6F 17/30592 (2013.01); GO6F
17/30601 (2013.01); GOGF 17/30867
(2013.01); GOGF 17/30879 (2013.01); GO6F
17/30958 (2013.01); G06Q 40/06 (2013.01)
(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,505,342 B1* 1/2003 Hartmann GO6F 11/3688
714/E11.208
6,868,525 B1* 3/2005 Szabo ... GO6F 17/30067
705/14.53
6,910,044 B2* 6/2005 Weinberg GO6F 17/243
707/792

(Continued)

FOREIGN PATENT DOCUMENTS

WO 02/052443 Al 7/2002

OTHER PUBLICATIONS

International Search Report and Written Opinion in PCT Applica-
tion PCT/US15/12762.

(Continued)

Primary Examiner — Hung Le

(57) ABSTRACT

This application relates generally to defining a domain-
specific syntax characterizing a functional information sys-
tem and performing operations on data entities represented
by the domain-specific syntax, including defining a domain-
specific syntax, receiving and storing a domain-specific data
entity, assigning a syntactic tag to the domain-specific data
entity, and electronically storing the tag assigned to the data
entity in the electronic data store so that the tag is logically
linked to the stored data entity.

30 Claims, 7 Drawing Sheets

ong-locus === Csubject-resource> <actity> <direct-objest-resource> <indrest-objeet-
resource>

object-1 <noun>
<indirect-object-resource> ™1 <noun>
<nound> ;== <resourced<resource-stage><resource-stage-value> |
<resource—human><resource—staging—human> |
<resource~div> |
<resource><resource-stage-div> |
<reso

<resource~humar
<resource-staging-human> == "Work’| Non-Hor’ | Both”
<resource—div> VDD’
<resqurce-stage DD,
<resource-stage-value-div> == "Di¥"

US 9,471,664 B2

Page 2
(56) References Cited 2012/0011118 Al 1/2012 Gleicher et al.
2012/0163588 Al* 6/2012 Kobayashi HO04L 9/3073
U.S. PATENT DOCUMENTS 380/28
2012/0166358 Al 6/2012 Steinberg et al.
7,003,522 Bl 2/2006 Reynar et al. 2012/0246094 Al 9/2012 Hsu et al.
7,117,175 B2 10/2006 Arnott 2012/0317136 Al 12/2012 Papish et al.
7,587,352 B2 9/2009 Arnott 2012/0327948 Al 12/2012 Mohandoss et al.
7,620,577 B2 11/2009 Arnott et al. 2013/0013608 Al 1/2013 Blr_d et al.
7,685,069 Bl 3/2010 Subramanian et al. 2013/0031453 Al* 1/2013 Griffiths GO6F 17/241
7,685,083 B2 3/2010 Fairweather 715/230
7,747,502 B2 6/2010 Arnott et al. 2013/0311967 Al* 11/2013 Aptecocevvvvnvenenn. GOG6F 8/00
7,769,653 B2 8/2010 Rousseau et al. 717/100
7,769,663 Bl 8/2010 Subramanian et al. 2014/0046872 Al 2/2014 Arnott et al.
7,778,905 B2 8/2010 Arnott
7,792,719 B2 9/2010 Arnott
7,839,849 Bl 11/2010 Attig et al. OTHER PUBLICATIONS
;:g;g:ggé gé éggﬁ Sd%ff}fé}goeéta;i, Aida Slavic, “Faceted Classification: Management and Use”, Jan.
7,970,684 Bl 6/2011 Benda 16, 2008.
8,005,740 B2 8/2011 Arnott et al. Vanda Broughton, “A Faceted Classification as the Basis of a
38,131,620 Bl 3/2012 Steinberg et al. Faceted Terminology: Conversion of a Classified Structure to The-
8,156,154 B2* 4/2012 Taranov GOGF 1%37%(3)‘2‘ saurus Format in the Bliss Bibliographic Classification, 2nd Edi-
tion”, Axiomathes (2008), vol. 18, pp. 193-210.
g’ggg’gg% gé léggg CA}ifl(S)iteéta;i International Search Report and Written Opinion in PCT Applica-
8374951 B2 22013 Amott et al. tion PCT/US14/30825. .
RE44.098 E 3/2013 Arnott et al. Fundamer.ltal I{ldexatlon, Robert D. Amott, Jason Hsu, and Philip
8,412,609 B2 4/2013 Lockwood et al. Moore, Financial Analysts Journal vol. 61, No. 2, 2005.
8,473,911 Bl 6/2013 Baxter International Search Report and Written Opinion in PCT Applica-
RE44,362 E 7/2013 Arnott et al. tion PCT/US14/30728.
8,533,081 B2 9/2013 Hsu et al. Portfolio Selection, Harry Markowitz, The Journal of Finance, vol.
8,560,414 B2 10/2013 Arnott 7, No. 1. (Mar. 1952), pp. 77-91.
8645317 B1* 2/2014 Klimetschek GOGF 17/3089 A Simplified Model for Portfolio Analysis, William F. Sharpe,
707/609 Management Science, vol. 9, No. 2 (Jan. 1963), pp. 277-293.
8,694,402 B2 4;2014 Anllgg et al. 1 Measuring Predictability: Theory and Macroeconomic Applica-
g’gg;’ggg gé " ?/%8}2 ggba ilrs%iet al. 380/28 tions, Francis X. Diebold, Lutz Kilian, Journal of Applied Econo-
20020108885 Al 122002 Streepy, Jr metrics, 16, 657-669 (2001). _
2003/0144826 Al* 7/2003 Mandell ...oooovvvin. GO6F 17/504 Foundations of Portfolio Theory, Harry M. Markovvltz, Nobel
703/14 Lecture, Dec. 7, 1990.
2005/0166140 Al 7/2005 Cai et al. A Five-Factor Asset Pricing Model, Fugene F. Fama and Kenneth
2005/0171884 Al 8/2005 Arnott R. French, Sep. 2014.
2005/0197944 Al 9/2005 Arnott On Persistence in Mutual Fund Performance, Mark M. Carhart,
2006/0041873 Al* 2/2006 Pandarinathan GO6F 8/71 Journal of Finance, vol. 52, Issue 1 (Mar. 1997), 57-82.
717/141 Federal Reserve Bank of New York Staff Reports, “Financial
%88?; 852?2;‘2 ﬁ} ;; 5883 \1\’\4{00‘1 al Intermediation, Asset Prices, and Macroeconomic Dynamics,”
oore et al. Tobias Adrian, Emanuel Moench, Hyun Song Shin, Staff Report No.
3k
ool AL+ 007 Py T GO 17 e S
5010/0058298 AL* 3/2010 Markoy ... GO6F 17/505 Illiquidity Premia in Asset Returns: An Emplrlc?l Analy_sm ofHedg_e
717/128 Funds, Mutual Funds, and U.S. Equity Portfolios, Amir Khandani,
2010/0145748 Al 6/2010 Mayle et al. Andrew W. Lo, Jun. 25, 2009.
2010/0169758 Al 7/2010 Thomsen
2010/0274733 Al 10/2010 Engel et al. * cited by examiner

US 9,471,664 B2

Sheet 1 of 7

Oct. 18, 2016

U.S. Patent

e

Nju /i 919K 1180 Ul uolyisod

/1/1 19D jo adh]

a/a/a/v onssi] jo adf|
ct/eL/uL/oL/e/8/L/9/s/v/s/e/) wayshs ubbig jo adA|

'@’} :bo] Ayu3 ojog [patbojoig o jo sjdwinx3

‘uiowop 9y} Jo Ayua pyop Kisas Joj uomisod pipA D SI asoy| —
"XDJuks boy oi1oads uibwop o 0} buipiooop
poziunbio xpjuhs uibwiop sy ur suomisod pipA juasaidai sanpa DD} ayj —
"PIDA S! uonyisod YoDa ‘SUOISINP—QNS % S[oA9| Saulap XDJuAs s ‘eje|dwiod sI uibwiog SIy] «

[oA9] D uo suonisod % S|eas] 0} buipiodoy seniu
D)o |poibojoig soziupbip xpjuhks onioads uipwoq |paibojoig siy|

US 9,471,664 B2

Sheet 2 of 7

Oct. 18, 2016

U.S. Patent

¢ Old

IX/IX/X/XI/WAJIA/IN/ NN/ 1L/ qor jo adf)
N/W//0/1/H/9/4/a/9/a/N juswyodaq jo adA|
ci/1L/oL/e/8/L/9/s/v/¢/t/) Auodwo) jo adA)

gz bp] Ayu3 pypg sqop b jo 8jdwpxy

‘uiowop 3y} Jo Ayjua pjop Kioaa Joj uomisod pIDA D SI Jay| —
"XDJuAs Doy o1j10ads ubwop D 0} buipiodop
poziunbio xojuAs uibwiop oy} ur suonyisod pipA jussaidas sanppa boy sy -
"PIIDA sI uoiyisod YoDa (SUOISINP—QNS R S|9Ad| Saulap XDuks syl ‘e)ejdwod si uibwoq Syl o

odf| Auodwoy ® juswyuodsq ‘qop 0y buipiodoy sannuj
DIDQ Sqop soziuobi(xojuAg oi10edg ulbwoq sqopr siy|

US 9,471,664 B2

Sheet 3 of 7

Oct. 18, 2016

U.S. Patent

€Ol

N/ufuf

[DLISIDJ [DUOROUN Ul UOKISOd

/1/1

D4 |ouonound jo adA|

2/a/v

wa)sAS—qng [puonound jo adA)

ZL/1L/oL/e/8/L/9/s/v/¢/T/\ SUIYOD jo adA)

g | :bol A3 pjpg BulyoDN D Jo S|dwDx]

‘uiowop 3y} Jo Ayjua pjop Aisas Joj uonisod pIDA D SI JAY| —
"XDJuks Bpy o1j193ds ubwop b 0} bulpiooap

poziunbio xpjuls uibwop oYy ur suoyisod pipA Jussaidas sanppa boy sy —
"PIIDA SI uonisod YoDa :SUOISIAIP—QNS % S[oA9| Sauljop xDJuAs sy ‘e)o|dwod si uiowoq SIy| «

[9AS] D UO suol)sod % S[oAsT 0} Buipiodoy sennuj
D)0 SUIYODW S8ziupbiQ XDAS ouoadg uibwiog SuUyODW Syl

US 9,471,664 B2

Sheet 4 of 7

Oct. 18, 2016

U.S. Patent

¥ Old

WX/1X /% /%1 /WA SN SN /N i i) qopr jo adA|
IX/IX/%/XI/INININ AN/ dnoug suop juswipdsq jo adA|
N/W//%/\/H/9/4/a/3/a/N Juawpndsq jo adA|
ci/Li/oL/e/8/L/9/s/v/s/e/\ asudiauy Jo adf]
gL :bop Anuy oypg esudisul ub jo ojdwox]

‘uibwop 2y} Jo Ayua pjop AIoas Joj uonisod pIDA D SI aJdy| —
"XDJuks boy oi1oads ubwop b 0} bulpiodop
poziunbio xpjuhs uibwiop oy} ur suonisod piypa jussaidai sanppa boy sy —
"PIDA SI uoiyisod YoDa (SUOISINIP—QNS % S|9A3| Sauldp XDuAs syl ‘e)e|dwod sI uibwo(q Sy o

|oAS] D UO Suolisod % SjoAeT 0} Buipioooy saiyijul
pIpq asudiayu] sdopy xpjuhkg oioads uibwoq asudieyul siyj

U.S. Patent Oct. 18, 2016 Sheet 5 of 7

<ent-bar—code> "::"
<int-bar—code> ™"
<first—int-bar—code> "::"
<second—int-bar-code> ™"
<para—cust-bar—code> ":"
<cust-bar—code> "
<cust-wg—bar—-code> "
<cust-dept-bar—code> ™"
<cust-final-bar—code> ™"
<cust-sub-bar—code> "
<c-of-c-bar-code> ™"
<c-of-c—wg-bar—code> "
<c-of—c—dept-bar—code> ™"
<c—of—c—final-bar—code> "
<c—of—c—sub—bar—code>

US 9,471,664 B2

<ent-bar—code> ::== <ent-locus> <ent-—process—marker> <ent-product—marker> <temp-coord-
value>

<temp—coord—value> ::== First” | "Second”
<ent-product—marker> ::== "Resource-Product” | "Activity—Product”
<ent—process—marker> ::== "In—house” | "Outsourced”
<ent-locus> === <long-locus>

<int-locus> === <long-locus>

<first—int-locus> ::== <long—locus>

<second—int-locus> ::== <long—locus>

<para—cust-locus> == <long-locus>

<cust-locus> == <long-locus>

<cust-wg—locus> ::== <long-locus>

<cust-dept-locus> === <long—locus>

<cust-final-locus> ::== <abbr-locus>

<cust-sub—locus> ::== <abbr-locus>

<c-of-c-locus> == <long-locus>

<c-of-c-wg—locus> === <long-locus>

<c-of-c—dept-locus> == <long—locus>

<c-of-c—final-locus> ::== <abbr-locus>

<c-of—c—sub—locus> ::== <abbr-locus>

<abbr—locus> == <subject-resource> <activity> <direct—object-resource>

FIG. 5-1

U.S. Patent Oct. 18, 2016 Sheet 6 of 7 US 9,471,664 B2

<long-locus> == <subject-resource> <activity> <direct-object-resource> <indirect—object-
resource>

<activity> === <verb>

<verb> == "Div" | <phase> "." <department> "." <division>

<subject-resource> === ""| <noun>

<direct—object-resource> === <noun>

<indirect—object-resource> === "" | <noun>

<noun> ::== <resource><resource-stage><resource—stage—value> |

<resource—human><resource—staging—human> |
<resource—div> |

<resource><resource—stage—div> |
<resource><resource—stage><resource—stage—value—div>

<phase> == "1"1"2"["3"|"4"
<department> == "1"1"2"["3"
<division> === "1"1"2"1"3"
<resource> == "A"I"B"1"C"1"D"

<resource-stage> === "1"I"2"|"3"|"4"
<resource—stage-value> === "i i’ | ii
<resource—human> == "F"

<resource—staging—human> ::== "Work” | "Non-Work” | "Both”
<resource—div> == "DivDivDiv"

<resource—stage—div> == "DivDiv’
<resource-stage—valug—div> == "Div’

FIG. 5-2

US 9,471,664 B2

Sheet 7 of 7

Oct. 18, 2016

U.S. Patent

l
unoy

| S—

9'Old

"§[DJ9)| jussaides saxoq aipnbg
's9|nJ juasaidal sax0q papunoy

321n0SaYy
103[q0—10auipu|

ooSowox
108lq0—10841Q

Aoy

oo;:owow_
108lqng

[A IA |
}] }
H 25Dy u . H Juswyndag H . aspy H
I 14 J m ¥ g
I R | N b]
anjpp aboig abojg 90.N0S9Y anjpp aboiS abojg 90.n0S9Y
| sonosay || eounosey | | sonosay || sounosay |

US 9,471,664 B2

1
SYNTACTIC TAGGING IN A
DOMAIN-SPECIFIC CONTEXT

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of application Ser. No.
14/736,262, filed Jun. 10, 2015, which is a continuation of
application Ser. No. 14/216,390, filed Mar. 17, 2014, now
U.S. Pat. No. 9,069,802, which claims the benefit of U.S.
Provisional Application No. 61/801,959, filed Mar. 15,
2013, and which claims the benefit of U.S. Provisional
Application No. 61/802,245, filed Mar. 15, 2013, the con-
tents of all of which are herein incorporated by reference.

FIELD OF THE INVENTION

This application relates generally to defining a domain-
specific syntax characterizing a functional information sys-
tem and performing operations on data entities represented
by the domain-specific syntax.

BACKGROUND

In virtually all domains, attempts at classification have
been made. Many of these attempts started with a one-
dimensional system based on a variant of the Dewey deci-
mal systems. These systems were augmented with facetted
keywords, creating ex-post catalogues of words that were
created based on the existing system. While these efforts
were normal knowledge processes created on an iterative
basis that helped characterize specific domains, they were
not rules-based. As a result, there are significant limitations
to how data structured in this manner can be used and
analyzed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example domain-specific syntax for
a biological domain.

FIG. 2 illustrates an example domain-specific syntax for
a jobs domain.

FIG. 3 illustrates an example domain-specific syntax for
a machine domain.

FIG. 4 illustrates an example domain-specific syntax for
an enterprise domain.

FIGS. 5-1 to 5-2 illustrate an example syntax.

FIG. 6 illustrates an example syntax tree.

DETAILED DESCRIPTION

It is through establishing a set of rules for a domain that
it is possible to change how information in a domain is
managed. The systems and methods described herein can be
configured to perform syntactic-tagging using a domain-
specific syntax, developing tags based on the syntax, and
applying the tags to domain-specific data entities. This
disclosure describes the existence and use of domain-spe-
cific syntax and domain-specific syntactic positions, includ-
ing the identification of attributes related to domain-specific
data entities that are associated with syntactic positions. It
further describes the relational attributes of syntactic tags
that enable syntactic positions to be related to each other.

As used herein, syntax can be considered to be a set of
rules. A syntactic position is a valid position based on this set
of rules. A symbol in a database marks a data entity. A
syntactic tag marks the association between a symbol and a

15

35

40

45

50

2

rule. A syntactic tag associates the data entity marked by a
symbol to the other data entities in a domain based on the
syntax-established set of rules. This process of syntactic
tagging provides a means for relating domain-specific infor-
mation. It takes information in a domain and tags it with
rules that relate it in the domain. Syntactic tags can be
dynamic.

A functional information system (FIS) can be imple-
mented using the syntactic tags described herein. The FIS
can create domain-specific coordinate systems that enable
data entities in a domain to be syntactically identified and
related. Domain-specific syntactic tags contextualize
domain specific data entities by relating them to each other
within the overall context of a domain (in general) and
domain syntax (specifically).

Terms and Definitions

Syntactic tags can have some or all of the following
properties:

Expressions which serve as the labels for tags. Such
expressions can conform to a syntax expressible in BNF
notation or an equivalent meta-notation.

Any valid expression or sub-expression consisting of
more than one element of the syntax, can form a locus.

Any element of the syntax that has a range of potential
values describes a dimension in a discrete multidimensional
space consisting of the dimensions associated with all such
elements.

Any expression or sub-expression of the syntax, contain-
ing elements which have a range of potential values, may be
hierarchically organized, in which case that expression or
sub-expression describes a dimension which consists of
regions and successive sub-regions within the multi-dimen-
sional space. As a default, elements of syntax which are
designated as hierarchical are interpreted from left to right
according to their position within the expression, as succes-
sive levels from top to bottom within the hierarchy.

Syntax can represent hierarchical coordinates that provide
successive specialization; the degree of specialization grows
with the depth of the hierarchy. The syntax can also provide
step-wise serialization at each level; the degree of serializa-
tion grows with the number of elements at each level.

In addition, at each level of specialization and/or degree
of serialization, the syntax elements share a proximate
syntactic position with both:

a) their parent in the hierarchy; and

b) their siblings in analogous positions across different
hierarchies in the same syntax in the same domain.

Syntax elements may be considered to have a proximate
syntactic position if they are relatively close to other ele-
ments based on either their hierarchical specialization or
serial positions. These relationships allow for comparison of
values across syntactic positions. This property supports
applications including but not limited to the complex struc-
tures, population sorting, autoclassification, and integration
with prior art temporal and spatial classification systems.

As a default, elements of syntax which are designated as
hierarchical are organized alphabetically and/or numerically
within a given level of a hierarchy.

As used herein, a domain can be, but is not limited to, a
field of action, thought, influence, etc., such as the domain
of science. Non-limiting examples of other domains are
illustrated in FIGS. 1-4.

The FIS can be implemented as a database system which
utilizes syntactic tagging and the related concept of a locus,
as a logical model for organizing data about a domain. A
basic implementation of the FIS can be achieved by having
a store of the syntactic terms of the FIS to augment the store

US 9,471,664 B2

3

of data entities in the domain. Each data entity would need
to have a reference to its location in the FIS. These table
references, would make it possible to search for all data-
entities in a specific position as well as search for the
position of any data entity in the system.

Syntactic Tag Use

Syntactic tags are assigned to structured or unstructured
data, either manually or via an automated process and can be
associated with a unique identifier for each data entity. When
sets of data entities are associated with a bounded, well-
known range of objects or entities, then a lexicon containing
standardized identifiers may optionally be used to facilitate
the assignment of identifiers to data entities.

Syntactic tags can be used to represent the syntactic
components of a domain-specific data entity. They can be
used for recording and storing information that indicates to
a user how specific data entities relate to each other and/or
to the specific domain. The tags can be used to determine
which data entities are similar and/or why they are different
and or to what degree they are different.

Storing domain-specific syntactic components of domain-
specific data entities adds a dimensionality to data that may
not otherwise exist. It is through establishing a set of rules
for a domain that it is possible to change how information in
a domain is managed. By establishing domain-specific rules,
it is possible to characterize the syntactic components of
data entities in a domain and populate sets of domain-
specific syntactic tags. They can be assigned to any domain-
specific data entity associated with a domain-specific syn-
tactic position. Once assigned, stored and retrievable, the
data entity can now be related with any other data entity that
shares any value on its syntactic tag. It can be used for
grouping of information based on, for example, broad values
or very specific values. If the values are broad, it provides
the ability to create ever-smaller sub-sets within the context
of the broad set. If other domains share the same syntax, the
tags can be used to compare data entities in one domain to
data entities in other domains based on shared syntax.

The rules of syntax can be based on an arbitrary number
of factors. As non-limiting examples, they could be based on
common temporal order, spatial order or mechanical order.
The rules could be areas specialized to a specific domain
such as the order of its influences or of its origins. The rules
could be experimental and the validity of the rules could be
tested using syntactic tags. In each case, the knowledge
influenced by some ordering principle has a syntax that
provides the rules for the domain-specific ordering. The
syntax provides valid positions for all domain-specific enti-
ties associated with these rules. Once recorded, stored, and
retrievable, the process of relating domain-specific data
entities based on syntactic tags can be based on established
rules defining how different data entities relate and why. This
system can be applied to any domain and any syntax. In so
doing, it provides a tool to add dimensionality to information
from any field. It can also provide a procedure for converting
a legacy system from any field into this framework by
applying syntactic tags to the legacy codes. An example
syntax is illustrated in FIGS. 5-1 and 5-2.

Syntactic positions in the system have specific attributes
that are associated with the rules of the syntax. For example,
if a domain-specific syntax is a temporally-based syntax, the
attributes will be temporally related; if it is a spatially-based
syntax the attributes will be spatially related; or, if the syntax
is mechanically-based, the attributes will be mechanically
related. If the syntax is sequential, the attributes will be
sequentially related. If the syntax is nested, the attributes
will be related to the rules of nesting. Relational attributes

10

15

20

25

30

35

40

45

50

55

60

65

4

are domain-specific. Within a domain they are specific to the
underlying rules of the domain-specific syntax. An example
syntax tree for economic systems is illustrated in FIG. 6.

To create syntactic tags, first a domain is defined, then a
domain-specific syntax is defined. Once these steps are
performed, syntactic tags can be created. In a preferred
embodiment, the system can be configured so that the
specific rules of the domain-specific syntax are fully repre-
sented in these domain-specific syntactic tags.

Syntactic tagging links data entities with shared attributes
by assigning each data entity to an element in the set of
common syntactic tags. The syntactic tags associate data
entities with the other data entities in a domain according to
their syntactic associations. Thus, they inherently group
and/or cluster all data entities that share syntactic tags.

Syntactic Tagging Operations

In some embodiments, syntactic tags can be assigned to
data entities which have one or more attributes in common,
or the same or similar meaning, in a context of interest for
the domain to which the FIS is applied. By tagging data
entities with data-entity-type tags, the system can operate on
multiple different kinds of data within a domain or data set.
For example, data for products or markets can be added to
company data. This function can be used in connection with
flagging functions, described below, to indicate that certain
tags may be required only for specific data-types.

Hierarchically organized tags can be used to express:

(1) successive specialization, whereby all data entities
that share the same tag at a higher level also share certain
common characteristics or meanings within the domain; and
the ordering of such labels within a level is a matter of tag
assignment convention, or is arbitrary

and/or

(2) a sequential process whereby all data entities that
share the same tag at the next higher level also share the
common characteristic that they are successive steps the
same sequential process of the domain, at the same level of
process-detail; and the ordering of such labels within the
category directly reflects the sequence of steps.

Domain Model Completeness for Structures of Interest

The complete enumeration of the valid syntactic tags, as
determined by the syntax, in as-intended use, provides a
complete pre-existing model for the structures of interest in
the domain to which the FIS model is applied, regardless of
whether any data is actually tagged with any given label.

Multiple Syntaxes

Syntactic tags do not need to derive from a single syntax.
The FIS can be implemented using multiple syntaxes for
tagging of the same data within a given domain. Syntaxes
which apply to more than one domain can be used as the
basis for a functional equivalence across those domains.

Simple Multiple Syntaxes

A simple multiple syntax can be used to enhance the value
of applying multiple syntaxes to an FIS model of a domain.
For example, if an executive recruiting FIS model/domain is
established which encompasses not only the company data
set associated with economics/business domain, but also
additional data, executive recruiting data can be used within
the economics/business domain to enhance investment port-
folios with executive team performance metrics, based on
historical performance analysis associated with members of
the executive team when they were at previous companies.
As a result, the system can be used to avoid correlation and
ensure diversification as well as screen for companies likely
to outperform based on executive team.

US 9,471,664 B2

5

Complex Multiple Syntaxes

A complex multiple syntax can be used to enhance the
value of applying multiple syntaxes across an FIS model of
a domain. Similar to the manner in which multiple syntaxes
can be applied to a single data set, those multiple syntaxes
can be applied across distinct data sets (each of which may
have one or more syntaxes associated with it). As a result,
syntaxes and data sets can have one-to-many, many-to-one,
and/or many-to-many relationships, as described below.

One-to-Many: One syntax (e.g., executive recruiting)
applied to a company data set and an individual-executive
data set.

Many-to-One: Similar to simple multiple syntaxes, for
example, executive recruiting and economics/business syn-
taxes could be applied to the company data set.

Many-to-Many: With many-to-many, substantially com-
plex queries and relationships can be explored.

Multiple syntaxes can be used in a variety of different
ways for a variety of different applications to order infor-
mation in a way that it makes data more accessible, search-
able and comparative within a domain and across domains.

Syntax Flags

Some embodiments of the system can include syntax flag
functionality. A syntax flag is a string of syntactic tags or loci
that represent a valid syntactic position. Syntax flags can be
used in connection with macro-tags comprising micro-tags,
such as in a bar code. In various embodiments, flags can be
associated with an entire syntax and/or components of a
syntax. []

The process of discovery or validation of functional
equivalences can be based on a range of valid expressions,
including those which are flagged within the syntax. In some
examples, a single flag may be applied; in other examples,
a flag could be a member of one of several classes of flags.
A class of flags can be configured to express the flags which
are applied to the primary syntax, in turn by using a syntax
(or meta-notation) to describe the flags.

In some examples, syntactic tags can be assigned to data
entities which have one or more attributes in common, or the
same or similar meaning, in a context of interest for the
domain to which the FIS is applied.

The system can be configured to enforce required tags that
are so designated, e.g. every enterprise must have an <enter-
prise locus resource> tag and it may also have a <customer
locus resource> tag, and <customer of customer locus
resource> tag. For example, the system can be configured to
require (in the case of the economics/business domain)
companies to have all appropriate tags and the BNF illus-
trated in the figures could be extended as follows: [J

<enterprise locus resource> ::=<locus>

<customer locus resource>::=<locus>[]

<customer of customer locus resource> ::=<locus>]

<locus™> ::= <subject-resource> <activity> <direct-object-resource>
<indirect- object-resource™>

In this example, if <enterprise locus resource> does not
get tagged with a subject resource because it is implicit or
unnecessary, then the definition can be revised as follows:
<enterprise locus resource>::=<activity> <direct-object-re-
source> <indirect-object- resource>

The system can be configured for an overtly literal
designation of the type of locus resource by defining these
as having a predetermined literal reflecting the type of locus
as follows:

10

15

20

25

30

35

40

45

50

55

60

65

6

<enterprise locus resource> ::="Enterprise Locus Resource ="<locus>[]
<customer locus resource>::=“Customer Locus Resource ="<locus>

Autoclassification

Autoclassification can be used for applying syntactic tags
to data entities in an existing structured or unstructured
domain-specific database through text mining by matching
sets of text-mined values associated with a specific data
entity to a specific syntactic position (simple or complex)
and tagging the text-mined values with syntactic tags that
are associated with the specific syntactic position.

Autoclassification solves the problem of having to manu-
ally associate large data sets to classification systems. This
is the traditional way of classifying data entities in a domain.
Traditional classification systems build a domain of related
flat taxonomies and then manually tag the information as it
is entered in the database, such as a library tags books using
the Dewey decimal system or governments classify busi-
nesses using SIC or NAICS codes.

Enabled by domain completeness, domain-specificity and
domain syntax, autoclassification syntactically tags domain-
specific data entities on an automated basis. This function is
performed by using domain-specific text mining algorithms
that can match words or symbols that are associated with
domain-specific data entities to domain-specific syntactic
positions (simple or complex) and then tagging the domain-
specific data entity with the syntactic tag or tags associated
with the syntactic position on an automated basis.

Autoclassification can be used to tag whole domains
containing domain-specific data entities with syntactic tags
based on a domain-specific syntax. This method can include
converting a structured or unstructured domain to a set of
standardized syntactic tags that relates data entities in a
common domain according to a domain-specific syntax.

Autoclassification can be used to convert legacy classifi-
cation systems to syntactic tags. This method can include
converting a domain that has many sub-domains that utilize
non-conforming classification, that are not compatible, to a
set of standardized syntactic tags that unifies different sys-
tems in a common domain. In some examples, this can
include converting businesses, products and labor (all with
different systems) into a unifying syntax.

The autoclassification framework can include a domain-
specific dictionary in which the terms represent complex
syntactic structures with names. The dictionary can be used
to tag data entities with complex syntactic structures by
matching the dictionary terms with text mining algorithms.

Mapping from one classification system to another is
common in legacy systems. For example, when one com-
pany acquires another, the two companies may have differ-
ent information and accounting systems. Moving from one
system to another system requires mapping data entities
from one system to the other system. Once done, the legacy
system that has been transferred is abandoned; information
is then collected according to the new system. In many
cases, however, this is not possible. For example, govern-
ments collect data over long periods of time. Consistency of
data is critical in the usefulness of this data.

A data conversion may require applying the conversion to
every historical period and/or maintaining two sets of
records (an old and a new). A problem may arise in that
newer systems may reflect the current vocabulary of the time
and place. There is typically is no convenient way to go back
and recode the historical. Syntactic tags solve this problem
because they use syntactic categories that are unchanged

US 9,471,664 B2

7

over time. There have been syntactically-definable business
entities for much of human history, although the words used
to describe them or classify them may have changed.

Syntactic tags can provide a system to reclassify these
historical terms in a historically consistent method. This can
be performed by the system using a process that collects
information about a data entity and, based on that informa-
tion, selects a term from a predefined dictionary of terms.
The terms in this dictionary can have, as attachments,
domain-specific tags that classify them in the specific
domain and may, in addition, contain contextual identifiers
that further identify them within a domain. The algorithm
can then attach a dictionary term with its pre-defined tags to
the specific data entity. The algorithm enables the system to
a tag data entity with multiple identifiers by matching it with
a value in the domain-specific dictionary.

Visualizations

The syntax and syntactic tags can be used to enable a
visualization engine based on domain-specific syntactic tag-
ging. More specifically, the syntax can be used to describe
dimensions of a coordinate space and thereby enable coor-
dinate space graphic plots. The result can be a syntactically-
driven visualization and discovery mechanism. Any element
of the syntax that has a range of potential terminal values
that describe a dimension in a discrete multidimensional
space can drive these visuals and enable sets of pre-set
inter-level or intra-level visualization packages for any
domain.

The syntactic visualization tools of the system can use
pre-set visualization templates utilizing coordinates of the
domain-specific syntax. The system can be configured to
filter the values associated with domain-specific entities to
specific syntactic positions on these visualization templates
to create a domain-specific template for a specific set of
domain-specific data entities. For example, one axis can be
syntactic coordinates for jobs and the other axis can be
syntactic coordinates for companies and the chosen query
might be “Seattle.” The visualization tool would map Seattle
jobs into this map according to the specific domain syntax.
This same query could then be performed on any other
geographic area using the same coordinates. In this way,
domain-specific data could be organized according to a
domain-specific syntax in standardized form. This form
could also be used to compare the same values at multiple
different geographic locations and multiple different times.

Syntactic visualization tools can also be powered by a
visualization engine that enables the user to custom-select
multiple syntactical coordinate ranges and query the system
to present a visualization that integrates the multiple coor-
dinates and presents them in a multi-dimensional visualiza-
tion using a chosen set of domain-specific data entities. Once
chosen, this visualization could be used for any set of
domain related data entities. The visualizations generated by
the system can be used for granular domain-specific analysis
and dynamic comparison across the domain at any point in
time at any geographic or spatial orientation.

Ordering of Domain-Specific Populations Using Syntac-
tic Tags

The system can be configured to create custom domain-
specific hierarchies on domain-specific data entities.
Domains consist of heterogeneous populations of domain-
specific data entities. The goal of classification systems, in
large part, is to organize these data entities into common
categories. Syntactic tagging adds dimensionality not avail-
able in existing classification systems by relating each data
entity to other data entities within a coherent whole. In doing
so, it provides dimensionality and customization in the

10

15

20

25

30

35

40

45

50

55

60

65

8

ordering of domain entities. It enables a user to create broad
categories of the data entities chosen by the user. It does this
by providing an interface for a user to create any desired
parent grouping by identifying a narrow set of attributes. It
then enables the user to create sub-populations that are
characterized by more attributes in addition to the parent
attributes. This process can continue until the data entities
sorted by the parent query have been exhausted.

The system can be configured to build custom population
groupings of domain-specific entities based on syntactic
tagging and thereby create custom population control algo-
rithms and structures. In many fields, such as the sciences,
there is a science behind population groupings because they
are the underpinning of most domain-specific experiments
or controls. For example, these type of population groupings
enable the tolerances in continuous processes to be opti-
mized, they enable risk to be minimized by allocating data
entities across differentiated population groupings such as in
clinical trials or risk management in finance, and they can
control for variances in customer demand in market demand
studies. Domain-specific syntactic tags can be used in the
system as a dynamic tool to build custom groupings and test
these groupings scientifically against real world examples.
They can be used in the system to provide a customization
in population control, enable experimentation in the testing
of domain-specific relationships relative to domain-specific
outcomes and, in turn, they provide the ability to control and
predict outcomes.

Integration of FIS with Time and Space

Some domains may depend on temporal or geographic
factors. If a domain is independent of these factors, its
domain-specific syntax may also be independent. Combin-
ing FIS syntactic tags with temporal and geographic data can
provide another tool for organizing domain-specific data
entities in domains that do depend on temporal or geo-
graphic factors. So for every valid syntactic tag there can be
a corresponding geographic tag and temporal tag.

Time and space can also be grouped or divided into
defined chunks that can be used as specific temporal and
spatial (or geographic) tags and attached to domain-specific
data entities to complement the syntactic tags. For example,
terms such as “long haul” or “short haul” can be defined by
such chunking, as can time periods such as “before elec-
tricity,” “the period while electricity was being developed,”
and “after electricity was developed.” The use of temporal
and geographic chunking provides a dynamic not found in
traditional classification system that needs to be updated as
the domain evolves and changes.

FIS tags can have integrated temporal and geographic
values and each query can be an integrated search of: FIS
value, temporal value, and/or geographic value. This inte-
gration of time, space, and FIS on a domain-specific basis
enables powerful types of domain-specific search, retrieval,
and analysis.

System Architectures

The systems and methods described herein can be imple-
mented in software or hardware or any combination thereof.
The systems and methods described herein can be imple-
mented using one or more computing devices which may or
may not be physically or logically separate from each other.
Additionally, various aspects of the methods described
herein may be combined or merged into other functions.

In some embodiments, the illustrated system elements
could be combined into a single hardware device or sepa-
rated into multiple hardware devices. If multiple hardware
devices are used, the hardware devices could be physically
located proximate to or remotely from each other.

US 9,471,664 B2

9

The methods can be implemented in a computer program
product accessible from a computer-usable or computer-
readable storage medium that provides program code for use
by or in connection with a computer or any instruction
execution system. A computer-usable or computer-readable
storage medium can be any apparatus that can contain or
store the program for use by or in connection with the
computer or instruction execution system, apparatus, or
device.

A data processing system suitable for storing and/or
executing the corresponding program code can include at
least one processor coupled directly or indirectly to com-
puterized data storage devices such as memory elements.
Input/output (I/0) devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled
to the system. Network adapters may also be coupled to the
system to enable the data processing system to become
coupled to other data processing systems or remote printers
or storage devices through intervening private or public
networks. To provide for interaction with a user, the features
can be implemented on a computer with a display device,
such as a CRT (cathode ray tube), LCD (liquid crystal
display), or another type of monitor for displaying informa-
tion to the user, and a keyboard and an input device, such as
a mouse or trackball by which the user can provide input to
the computer.

A computer program can be a set of instructions that can
be used, directly or indirectly, in a computer. The systems
and methods described herein can be implemented using
programming languages such as Ruby™, Flash™, JAVA™,
C++, C, C#, Visual Basic™, JavaScript™, PHP, XML,
HTML, etc., or a combination of programming languages,
including compiled or interpreted languages, and can be
deployed in any form, including as a stand-alone program or
as a module, component, subroutine, or other unit suitable
for use in a computing environment. The software can
include, but is not limited to, firmware, resident software,
microcode, etc. Protocols such as SOAP/HTTP may be used
in implementing interfaces between programming modules.
The components and functionality described herein may be
implemented on any operating system or environment
executing in a virtualized or non-virtualized environment,
using any programming language suitable for software
development, including, but not limited to, different versions
of Microsoft Windows™, Android™, Apple™ Mac™,
10OS™ Unix™/X-Windows™, Linux™, etc. The system
could be implemented using a web application framework,
such as Ruby on Rails.

The processing system can be in communication with a
computerized data storage system. The data storage system
can include a non-relational or relational data store, such as
a MySQL™ or other relational database. Other physical and
logical database types could be used. The data store may be
a database server, such as PostgreSQL™, MongoDB™,
Microsoft SQL Server™, Oracle™, IBM DB2™,
SQLITE™, or any other database software, relational or
otherwise. The data store may store the information identi-
fying syntactical tags and any information required to oper-
ate on syntactical tags. In some embodiments, the processing
system may use object-oriented programming and may store
data in objects. In these embodiments, the processing system
may use an object-relational mapper (ORM) to store the data
objects in a relational database.

Suitable processors for the execution of a program of
instructions include, but are not limited to, general and
special purpose microprocessors, and the sole processor or
one of multiple processors or cores, of any kind of computer.

30

40

45

55

10

A processor may receive and store instructions and data
from a computerized data storage device such as a read-only
memory, a random access memory, both, or any combination
of the data storage devices described herein. A processor
may include any processing circuitry or control circuitry
operative to control the operations and performance of an
electronic device.

The processor may also include, or be operatively coupled
to communicate with, one or more data storage devices for
storing data. Such data storage devices can include, as
non-limiting examples, magnetic disks (including internal
hard disks and removable disks), magneto-optical disks,
optical disks, read-only memory, random access memory,
and/or flash storage. Storage devices suitable for tangibly
embodying computer program instructions and data can also
include all forms of non-volatile memory, including, for
example, semiconductor memory devices, such as EPROM,
EEPROM, and flash memory devices; magnetic disks such
as internal hard disks and removable disks; magneto-optical
disks; and CD-ROM and DVD-ROM disks. The processor
and the memory can be supplemented by, or incorporated in,
ASICs (application-specific integrated circuits).

The systems, modules, and methods described herein can
be implemented using any combination of software or
hardware elements. The systems, modules, and methods
described herein can be implemented using one or more
virtual machines operating alone or in combination with
each other. Any applicable virtualization solution can be
used for encapsulating a physical computing machine plat-
form into a virtual machine that is executed under the control
of virtualization software running on a hardware computing
platform or host. The virtual machine can have both virtual
system hardware and guest operating system software.

The systems and methods described herein can be imple-
mented in a computer system that includes a back-end
component, such as a data server, or that includes a middle-
ware component, such as an application server or an Internet
server, or that includes a front-end component, such as a
client computer having a graphical user interface or an
Internet browser, or any combination of them. The compo-
nents of the system can be connected by any form or
medium of digital data communication such as a commu-
nication network. Examples of communication networks
include, e.g., a LAN, a WAN, and the computers and
networks that form the Internet.

One or more embodiments of the invention may be
practiced with other computer system configurations,
including hand-held devices, microprocessor systems,
microprocessor-based or programmable consumer electron-
ics, minicomputers, mainframe computers, etc. The inven-
tion may also be practiced in distributed computing envi-
ronments where tasks are performed by remote processing
devices that are linked through a network.

While one or more embodiments of the invention have
been described, various alterations, additions, permutations
and equivalents thereof are included within the scope of the
invention.

In the description of embodiments, reference is made to
the accompanying drawings that form a part hereof, which
show by way of illustration specific embodiments of the
claimed subject matter. The figures herein represent example
use cases for the syntactic tagging system and are not
intended to be limiting on the scope of the invention. It is to
be understood that other embodiments may be used and that
changes or alterations, such as structural changes, may be
made. Such embodiments, changes or alterations are not
necessarily departures from the scope with respect to the

US 9,471,664 B2

11

intended claimed subject matter. While the steps herein may
be presented in a certain order, in some cases the ordering
may be changed so that certain inputs are provided at
different times or in a different order without changing the
function of the systems and methods described. The dis-
closed procedures could also be executed in different orders.
Additionally, various computations that are herein need not
be performed in the order disclosed, and other embodiments
using alternative orderings of the computations could be
readily implemented. In addition to being reordered, the
computations could also be decomposed into sub-computa-
tions with the same results.

The invention claimed is:

1. A method for executing a command in a computing
environment to perform a database operation utilizing a
computerized representation of a functional system, the
method comprising:

electronically storing a set of data entities in a database

system, wherein the data entities represent elements of
the functional system, and wherein the functional sys-
tem comprises a group of elements related by their
functional roles;

electronically storing a computerized representation of a

functional system syntax;

the functional system syntax representing functional attri-

butes of the elements of the functional system, wherein
the functional attributes are properties of the elements
of' the functional system in converting inputs to outputs,
or as the inputs, or as the outputs, or as intermediates
between the inputs and the outputs;

the functional system syntax representing functional rela-

tionships among inputs to the elements, outputs from
the elements, intermediates between the inputs and the
outputs, or roles of the elements in converting the
inputs to the outputs; and

enabling data creating, reading, updating, and deleting

operations on the data entities in the data store to
correspond with changes in the functional system.

2. The method of claim 1, further comprising electroni-
cally assigning syntactic tags to the data entities based on the
computerized representation of the functional system.

3. The method of claim 2, further comprising electroni-
cally assigning syntactic tags to the data entities based on the
functional attributes of the elements which the data entities
represent.

4. The method of claim 3, further comprising assigning a
value to a tag corresponding to at least one of the functional
attributes, wherein the value provides a numerical, statisti-
cal, semantic, or visual characterization of a property of an
element in the functional system.

5. The method of claim 2, further comprising electroni-
cally assigning syntactic tags to the data entities based on the
electronically stored functional relationships among the ele-
ments.

6. The method of claim 2, further comprising:

ordering or grouping the data entities based on their

associated syntactic tags;

performing a relational search based on the associated

syntactic tags; and

returning a resultant set based on the relational search, the

set comprising data entities, relations on the set of data
entities, or values based on the search.

7. The method of claim 2, further comprising performing
an automated assignment of syntactic tags, attributes, or
values using algorithms associated with the data entities.

8. The method of claim 2, further comprising controlling
for the heterogeneity of a population or of attributes, tags, or

30

35

40

45

50

55

65

12

values associated with its members by grouping represen-
tations of populations according to their syntactic tags,
electronically storing the representations, and algorithmi-
cally allocating populations based on the tagged groups.

9. The method of claim 8, further comprising controlling
for heterogeneity within a gene database, wherein the data-
base electronically represents two or more genes.

10. The method of claim 8, wherein the syntax is used to
reduce statistical dependence or increase diversification
among groups of data entities or elements.

11. The method of claim 1, wherein one or more data
entities represent one or more nodes, a relation on a set of
nodes, or connections among one or more nodes.

12. The method of claim 11, wherein a node comprises a
vertex in a graph, and a connection between a node com-
prises an edge in a graph.

13. The method of claim 11, wherein one or more nodes,
or one or more connections among one or more nodes,
represent one or more resources, activities, elements, inputs,
outputs, intermediates, functions, nouns, verbs, subjects,
objects, or loci.

14. The method of claim 13, wherein the nodes, connec-
tions, or their referents are represented as coordinates in a
space having an arbitrary number of dimensions.

15. The method of claim 11, further comprising iterating
through the database to construct a graph representation of
one or more data entities representing the inputs, interme-
diates, outputs, resources, activities, or elements, or the
relationships among them, in the functional system.

16. The method of claim 15, further comprising config-
uring a mechanism for traversing, visualizing, or interacting
with the graph.

17. The method of claim 1, further comprising clustering
the data entities based on one or more of the functional
attributes or functional relationships.

18. The method of claim 17, further comprising clustering
the data entities based on statistical relationships among the
functional relationships or functional attributes.

19. The method of claim 1, further comprising:

associating a statistical property with one or more func-

tional relationships or functional attributes;
calculating two or more statistical values associated with
the statistical property;

determining the statistical significance of the calculated

statistical values of or among one or more functional
attributes or functional relationships.

20. The method of claim 1, further comprising generating
a coordinate space graphic plot.

21. The method of claim 1, wherein the functional system
syntax represents an ordered relationship among functional
attributes of at least two elements of the functional system,
wherein the ordered relationship is functional, nonfunc-
tional, temporal, spatial, or mechanical.

22. The method of claim 1, wherein the properties are
characteristic.

23. The method of claim 1, further comprising combining
data entities to form valid syntactic expressions by assigning
syntactic tags to the data entities in the computerized rep-
resentation of the functional system based on the functional
attributes of the elements to which the data entities corre-
spond.

24. The method of claim 23, wherein the tags or expres-
sions are ordered, stratified, or segmented and represented in
graphical, sequential, clustered, or networked form.

25. The method of claim 1, wherein:

the elements further comprise one or more resources or

activities;

US 9,471,664 B2

13

a resource comprises an input, intermediate, or output in
the functional system; and

an activity comprises a function in the functional system.

26. The method of claim 1, further comprising associating
geographic, temporal, or other non-functional or non-syn-
tactic attributes, tags, or values with one or more data
entities.

27. The method of claim 1, wherein:

the functional system syntax is represented by an n-di-
mensional coordinate system comprising a set of posi-
tions.

28. The method of claim 27, wherein:

a set of n values in an n-tuple of tags represents a specific
valid functional location in the functional system syn-
tax; and

any set of positions that has common values represents a
common set of valid functional locations in the func-
tional system syntax.

29. The method of claim 1, further comprising building
population groupings of entities based on proximity in the
functional system syntax, wherein the proximity is based on
temporal, geographic, spatial, mechanical, anatomical,
physical, ecological, genomic, biological, environmental,
astronomical, or functional order in the functional system.

30. The method of claim 1, further comprising allocating
data entities across differentiated population groupings to
increase the predictability or stability of performance in the
functional system.

10

15

20

25

14

